



## Data Presentation

Maj Gen (R) Suhaib Ahmed, HI (M)

MBBS; MCPS; FCPS (Pak); PhD (London)

Genetics Resource Centre (GRC)



www.grcpk.com





- ◆ Two categories (male/female etc.)
- ◆ More than two categories (AML M1/M2/M3/M4.... etc.)
  - ◆ Nominal (Blood groups A/B/O/AB)
  - ◆ Ordinal (ordered) (mild/moderate/severe)
- ◆Numerical
  - ◆ Discrete (number of children etc.)
  - ◆ Continuous (blood glucose, Hb, TLC etc.)





## Dealing with numbers

- ◆ Average diastolic blood pressure 85.348 should be written as 85.3
- Do not round a number twice
- Rounding should be used in the final presentation
- ◆ For numbers less than 1 use zero before the decimal point: .729 (0.729)
- Quote all comparable results to the same decimal place



# Presentation of numerical data



- Mean or median
- Indication of variability
  - ◆ Range (min-max)
  - ◆ Percentiles (cumulative relative frequency)
  - ◆ Standard Deviation (SD)
    - ◆ Best used for data with normal distribution
    - ◆102.3 (±11.9) is correctly written as 102.3 (SD 11.9)





- Ratio of two quantities
- Usually used for frequency of occurrences
- Numbers should be given with the percentage 23/45 (51%)
- Do not use % for total numbers less than 5
   e.g. 3/5 (60%) is not right
- Do not give % to too many decimal places
  - ◆ 17/45 (37.77%) is incorrect
  - ◆ 17/45 (37.8% or 38%) is correct



### Data Presentation



- ◆ Text
- ◆ Tables
- Graphs
- Histograms
- Figures





- Best suited for complex data
  - ◆ Several variables and groups of subjects
  - ◆ Like kind of data in columns rather than rows
  - ◆ May be used for giving raw data
  - ◆ Data may be ordered by one of the variables



| Mutation            | Punjabi     | Pathan      | Sindhi      | Baluchi     | Mohajir    | All         |
|---------------------|-------------|-------------|-------------|-------------|------------|-------------|
| Common mutations    |             |             |             |             |            |             |
| IVSI-5 (G-C)        | 107 (27.2%) | 27 (12.9%)  | 114 (43.9%) | 131 (76.2%) | 75 (41.4%) | 454 (37.3%) |
| Fr 8-9 (+G)         | 146 (37.2%) | 103 (49.1%) | 29 (11.2%)  | 14 (8.1%)   | 23 (12.7%) | 315 (25.9%) |
| Del 619 bp          | 14 (3.6%)   | 4 (1.9%)    | 36 (13.9%)  | 2 (1.2%)    | 29 (16.0%) | 85 (7.0%)   |
| Fr 41-42 (-TTCT)    | 36 (9.2%)   | 18 (8.6%)   | 16 (6.2%)   | 1 (0.6%)    | 11 (6.1%)  | 82 (6.7%)   |
| IVSI-1 (G-T)        | 19 (4.8%)   | 4 (1.9%)    | 33 (12.7%)  | 2 (1.2%)    | 7 (3.9%)   | 65 (5.4%)   |
| Uncommon mutations, |             |             |             |             |            |             |
| Cd 15 (G-A)         | 14 (3.6%)   | 13 (6.2%)   | 5 (1.9%)    | 9 (5.2%)    | 8 (4.4%)   | 49 (4.0%)   |
| Cd 30 (G-C)         | 15 (3.8%)   | 1 (0.5%)    | 19 (7.3%)   | 3 (1.7%)    | 4 (2.2%)   | 42 (3.5%)   |
| Cd 5 (-CT)          | 11 (2.8%)   | 16 (7.6%)   | 0 (0.0%)    | 1 (0.6%)    | 2 (1.1%)   | 30 (2.5%)   |
| Fr 16 (-C)          | 6 (1.5%)    | 8 (3.8%)    | 6 (2.3%)    | 6 (3.5%)    | 3 (1.7%)   | 29 (2.4%)   |
| Cap + 1 (A-C)       | 9 (2.3%)    | 8 (3.8%)    | 0 (0.0%)    | 0 (0.0%)    | 3 (1.7%)   | 20 (1.6%)   |
| Hb-E                | 3 (0.8%)    | 0 (0.0%)    | 0 (0.0%)    | 0 (0.0%)    | 10 (5.5%)  | 13 (1.1%)   |
| Cd 30 (G-A)         | 3 (0.8%)    | 2 (1.0%)    | 0 (0.0%)    | 2 (1.2%)    | 4 (2.2%)   | 11 (0.9%)   |
| IVSII-1 (G-A)       | 6 (1.5%)    | 1 (0.5%)    | 0 (0.0%)    | 1 (0.6%)    | 2 (1.1%)   | 10 (0.8%)   |
| Rare mutations      |             |             |             |             |            |             |
| -88 (C-T)           | 1 (0.3%)    | 2 (1.0%)    | 0 (0.0%)    | 0 (0.0%)    | 0 (0.0%)   | 3 (0.3%)    |
| IVSI-1 (G-A)        | 1 (0.3%)    | 0 (0.0%)    | 1 (0.4%)    | 0 (0.0%)    | 0 (0.0%)   | 2 (0.2%)    |
| Fr 47-48 (+ ATCT)   | 2 (0.5%)    | 0 (0.0%)    | 0 (0.0%)    | 0 (0.0%)    | 0 (0.0%)   | 2 (0.2%)    |
| Fr 126-131 (-17 bp) | 0 (0.0%)    | 2 (1.0%)    | 0 (0.0%)    | 0 (0.0%)    | 0 (0.0%)   | 2 (0.2%)    |
| Cd 39 (C-T)         | 0 (0.0%)    | 1 (0.5%)    | 0 (0.0%)    | 0 (0.0%)    | 0 (0.0%)   | 1 (0.1%)    |
| IVSI minus 25       | 0 (0.0%)    | 0 (0.0%)    | 1 (0.4%)    | 0 (0.0%)    | 0 (0.0%)   | 1 (0.1%)    |
| Total               | 393 (100%)  | 210 (100%)  | 260 (100%)  | 172 (100%)  | 181 (100%) | 1216 (100%) |

<sup>© 1996</sup> Blackwell Science Ltd, British Journal of Haematology 94: 476–482





#### **Table 3: Gender Distribution**

| Gender | Number | Frequency (%) |
|--------|--------|---------------|
| Female | 1042   | 52.1          |
| Male   | 958    | 47.9          |
| Total  | 2000   | 100           |





Table 2: Chronic Hepatitis C and Erythropoietin Therapy

| Characteristic                                       | No              |  |
|------------------------------------------------------|-----------------|--|
| Total patients                                       | 370             |  |
| Patients who developed anaemia                       | 267             |  |
| Patients who received Erythropoietin                 | 31              |  |
| Hb improvement by Erythropoietin                     | 26              |  |
| No response to Erythropoietin                        | 3               |  |
| Ribavirin dose maintained while on<br>Erythropoietin | 29              |  |
| Riabavirin dose decreased while on<br>Erythropoietin |                 |  |
| Early virological response(EVR)*                     | 75%             |  |
| End of Treatment Response**                          | 77%             |  |
| Sustained Viral Response (SVR)***                    | 69 <sup>a</sup> |  |

\*EVR=Early Virological Response. It means HCV RNA cannot be detected in the blood at week 12 of treatment (complete EVR) or HCV RNA drops by more than 2 logs (100 times) from the baseline level by week 12 (partial EVR). Not reaching EVR predicts a low likelihood of achieving viral cure, \*\*ETR=End of Treatment Response. It means HCV RNA is not detected in the blood at the end of treatment.\*\*\*SVR=Sustained Viral Response. It means HCV RNA is not detected six months after treatment ends.

Table 6: One way ANOVA for determining differences in newborn variables between

group 1 and group 2

|          |                   | Sum of<br>Squares | df | Mean<br>Square | F      |
|----------|-------------------|-------------------|----|----------------|--------|
| НЬ       | Between<br>Groups | 14.744            | 1  | 14.744         | 11.211 |
|          | Within<br>Groups  | 63.124            | 48 | 1.315          |        |
|          | Total             | 77.867            | 49 |                |        |
| Hct      | Between<br>Groups | 169.867           | 1  | 169.867        | 12.375 |
|          | Within<br>Groups  | 658.900           | 48 | 13.727         |        |
|          | Total             | 828.767           | 49 |                |        |
| MCV      | Between<br>Groups | 11.272            | 1  | 11.272         | .319   |
|          | Within<br>Groups  | 1693.855          | 48 | 35.289         |        |
|          | Total             | 1705.127          | 49 |                |        |
| RDW      | Between<br>Groups | 510.619           | 1  | 510.619        | 1.398  |
|          | Within<br>Groups  | 17526.529         | 48 | 365.136        |        |
|          | Total             | 18037.149         | 49 |                |        |
| Ferritin | Between<br>Groups | 1158.647          | 1  | 1158.647       | .271   |
| remm     | Within<br>Groups  | 205357.833        | 48 | 4278.288       |        |
|          | Total             | 206516.480        | 49 |                |        |
|          | Between<br>Groups | 1708.749          | 1  | 1708.749       | .153   |
| Iron     | Within<br>Groups  | 535611.971        | 48 | 11158.583      |        |
|          | Total             | 537320.720        | 49 |                |        |
|          | Between<br>Groups | 1172.248          | 1  | 1172.248       | 2.652  |
| TfS      | Within<br>Groups  | 21215.220         | 48 | 441.984        |        |
| 1.47     | Total             | 22387.468         | 49 |                |        |

Table-1: Multivariate regression analysis; clinical diagnosis test of thyroid as dependent variable and age, sex, palmar sweating, palpitation, pulse, preference for weather, weight change

|                    | Co- efficient | p-value      |
|--------------------|---------------|--------------|
| constant           | 3.032         | .000         |
| Pulse              | 058           | .109         |
| Weather change     | 007           | .847         |
| Weight change      | .016          | .671         |
| Palmar sweating    | 489           | .000         |
| Tremors            | 485           | .000         |
| Bruit              | 036           | .819         |
| Emotional lability | .232          | .017         |
| Tiredness          | .007          | .896         |
| R-square adjusted  | .82           |              |
| R-square           | .91           | DAY THE SAME |
| F-value            | 38.58         | .000         |

Table-2: Multivariate regression analysis; biochemical diagnosis test of thyroid as dependent variable and T3, T4 and TSH as predictors

|                   | coefficient | p-value |
|-------------------|-------------|---------|
| Constant          | 2.71        | .000    |
| T3                | -0.94       | .442    |
| T4                | -0.44       | .408    |
| TSH               | 438         | .000    |
| R-adjusted square | .82         |         |
| R-square          | .91         |         |
| F-value           | 157         | .000    |







Table 1: Difference in Kaltenborn mobilization and general scapular mobilization

| Variable              | Kaltenborn<br>Scapular<br>Mobilization<br>Group | General<br>Scapular<br>Mobilization<br>Group |
|-----------------------|-------------------------------------------------|----------------------------------------------|
| Mean                  | 62.68                                           | 9.09                                         |
| Median                | 70                                              | 15                                           |
| Mode                  | 80                                              | 15                                           |
| Standard<br>Deviation | 18.24536                                        | 18.9307                                      |
| Sample<br>Variance    | 332.8933                                        | 258.658                                      |
| Minimum               | 20                                              | -35                                          |
| Maximum               | 90                                              | 35                                           |
| Count                 | 25                                              | 22                                           |
| p-value               | p<0.0001                                        | p<0.047                                      |



Table 1: Site of involvement with Hidradenitis Suppurativa:

| Site of body               | No(%)     |
|----------------------------|-----------|
| Axilla                     | 23(74.19) |
| Breast (inframammary fold) | 06(19.35) |
| Gluteal region             | 01(3.22)  |
| Perianal                   | 01(3.22)  |
| Multiple sites             | 11(35.48) |

Table 2: Presenting features of Hidradenitis
Suppurativa

| Presenting feature | No(%)     |
|--------------------|-----------|
| Abscess            | 09(29.03) |
| Sinuses            | 06(19.35) |
| Cellulitis         | 02(6.45)  |
| Chronic scar       | 07(22.58) |
| Mixed feature      | 07(22.58) |

Table 3: Surgical procedures performed

| Procedure                        | No(%)     | Recurrence |
|----------------------------------|-----------|------------|
| Incision & Drainage              | 09(29.03) | (09) 100%  |
| Excision & Primary<br>Skin Graft | 17(54.83) | (03) 9.67% |
| Excision & Primary closure       | 05(16.12) | (02) 40%   |







| Site of involvement | No(%)    |
|---------------------|----------|
| Femur               | 8(21.62) |
| Spine               | 7(18.91) |
| Scapula             | 4(10.81) |
| Proximal tibia      | 4(10.81  |
| Iliac crest         | 2(5.4)   |
| Sacrum              | 2(5.4)   |
| Pelvis              | 2(5.4)   |
| Fibula              | 1(2.7)   |
| Ankle               | 1(2.7)   |
| Humerus             | 1(2.7)   |
| Knee                | 1(2.7)   |
| Iliac bone          | 1(2.7)   |
| Distal radius       | 1(2.7)   |
| Proximal tibia      | 1(2.7)   |
| Coccyx              | 1(2.7)   |







- ◆ Table or a graph?
- Bar graph
- Pie chart/ Stacked Bar
- Histogram (for continuous numerical variables)
- Scatter diagrams for relationship between two variables
- Line graphs for changes over time
- Survival plots
- Visual effects (3D effects) are best avoided













Fig 2: Parity Distribution



Fig. 2: Grades of pancreatic injury (n=10)







Fig. 4: Distribution of grade of dysphagia at day 0 and day 30.













■ 1st Qtr ■ 2nd Qtr ■ 3rd Qtr ■ 4th Qtr







Fig. 1: Grades of tympanic membrane tears.







Fig 3: Frequency of Hypertensive Patients





- Pictures
- ◆ Diagrams
- ◆ Flow-charts









Figure 1: Schematic representation of the axial ultrasonic plane used to view the posterior fossa structures. The view incorporates the cavum septum pellucidum, thalami and posterior fossa.







Figure 1: Schematic representation of the axial ultrasonic plane used to view the posterior fossa structures. The view incorporates the cavum septum pellucidum, thalami and posterior fossa.