Basics of Statistical Analysis

Maj Gen (R) Suhaib Ahmed, HI (M)
MBBS; MCPS; FCPS; PhD (London)

Genetics Resource Centre (GRC)

www.grcpk.com

Statistics: The Science of

- Data collection
- Data presentation
- Data interpretation
- Statistical analysis

"Data don't make any sense, we will have to resort to statistics."
www.VADLO.com

"I can prove it or disprove it! What do you want me to do?"

Statistics 关 p value

Statistics

- Why ?
- When ?
- How ?

Statistical Analysis

- Descriptive
- Comparison
- Correlation
- Probability and risk analysis
- Survival analysis

Types of Data

- Categorical data:
- Two categories:
- >Two categories:
- Ordered categories:

Male /Female, True/False
Ethnic groups, Blood groups
Mild Moderate Severe

- Numerical data:
- Discrete:

Number of children

- Continuous: Blood glucose, Hb
- Other types:
- Rates
- Ratios
- Mean
- Arithmetic average
- Median
- Middle value when ranked in order
- Mode
- Value that occurs most often

Why do we need statistical analysis?

- To use the information gained from a "sample population" to make inferences about the "actual population"

Population

- Inhabitants of a place
- Patient population
- Sample population

Distribution of Population

- Normal
- Abnormal

Normal Distribution:

Large sample

Abnormal Distribution

(Selected sample)

Abnormal Distribution

(a) Symmetrical and bell-shaped

(b) Positively skewed or skewed to the right

(c) Negatively skewed or skewed to the left

Binomial Distribution

Standard Error of Mean (SEM)

Mean Haemoglobin

- 2.5
- 4.5
- 7.2
- 7.9
- 8.7
- 9.6
- 9.8
- 10.5
- 11.7
- 13.2
- 14.1

Mean: 9.1
Range: 2.5-14.5
SD: $\quad 3.32$

Mean Haemoglobin in Two Groups

Group-I

- 2.5
- 4.5
- 7.2
- 7.9
- 8.7
- 9.6
. 9.8
- 10.5
- 11.7
- 13.2
- 14.1

Mean: 9.1
Range: 2.5-14.5
SD: $\quad 3.32$

Group-II
. 7.3

- 8.4
- 8.6
- 8.7
- 9.0
- 9.1
. 9.6
- 9.7
- 10.1
- 10.2
- 10.3

Mean: 9.2
Range: 7.3-10.3
SD: 0.87

Dispersion around the Mean

(Expression of Variability)

- Range
- Standard Deviation (SD)
- Coefficient of Variation (CV)
- Standard Error of the Mean (SEM)

Standard Deviation (SD)

- ± 1 SD: 70\%
- ± 2 SD: 95\%
- ± 3 SD: 99\%

Statistical Analysis

- Parametric Tests
- Student's t-test
- Non Parametric Tests
- Mann-Whitney U test

Statistical Analysis: Comparison between groups

- Hypothesis testing (p value)
- Confidence interval (CI)

Comparison between groups:

Hypothesis testing

- Null hypothesis
- There is no difference between the groups
- Alternate hypothesis
- There is a difference between the groups

Comparison between groups:

Hypothesis testing

- Null hypothesis
- There is no difference between the groups
- Alternate hypothesis
- There is a difference between the groups
- P value
- Probability that the null hypothesis is correct

I nterpretation of P value

- 1.0

$$
=100 \%
$$

- $0.5=50 \%$
- $0.29=29 \%$
- $0.12=12 \%$
- $0.07=7 \%$
- $0.05=5 \%$
- $0.01=1 \%$
- $0.001=0.1 \%$

I nterpretation of P value

 Significant and not significant■ $P=0.03$

- $P=0.05$

■ $\mathrm{P}=0.09$

Comparison between groups:

 Hypothesis testing

$$
P=0.03(P<0.05)
$$

There is a statistically significant difference between the two groups

Comparison between groups:

 Hypothesis testing (P value)

$$
P=0.09 \quad(P>0.05)
$$

There is no statistically significant difference between the two groups

Confidence I nterval (CI)

- A range (interval) in which one is confident that it contains the actual population mean
- Example: ($95 \% \mathrm{Cl}=8.4-10.5 \mathrm{~g} / \mathrm{dl}$)
- \% Cl ?
- 90\%
- 95\%
- 99\%

- Six sides
- Chance of each side: $1 / 6$ (16.6\%)

Rolling the Dice

No:	Expected Frequency:	Observed Frequency:			
		I	II	I I I	IV
12 times	$\begin{aligned} & 2 / 12 \\ & (17 \%) \end{aligned}$	$\begin{aligned} & 3 / 12 \\ & (25 \%) \end{aligned}$	$\begin{aligned} & 1 / 12 \\ & (8 \%) \end{aligned}$	$\begin{aligned} & 4 / 12 \\ & (33 \%) \end{aligned}$	$\begin{aligned} & 2 / 12 \\ & (17 \%) \end{aligned}$

Rolling the Dice

No:	Expected Frequency:	Observed Frequency:			
		II	III	IV	
48 times	$2 / 12$	$3 / 12$	$1 / 12$	$4 / 12$	$2 / 12$
	(17%)	(25%)	(8%)	(33%)	(17%)
	$8 / 48$				
		$7 / 48$	$6 / 48$	$10 / 48$	$8 / 48$
		(15%)	(13%)	(21%)	(17%)

Rolling the Dice

No:	Expected Frequency:	Observed Frequency:			
		II	III	IV	
12 times	$2 / 12$	$3 / 12$	$1 / 12$	$4 / 12$	$2 / 12$
$(8-33 \%)$	(17%)	(25%)	(8%)	(33%)	(17%)
48 times	$8 / 48$	$7 / 48$	$6 / 48$	$10 / 48$	$8 / 48$
$(13-21 \%)$	(17%)	(15%)	(13%)	(21%)	(17%)
192 times	$32 / 192$	$31 / 192$	$32 / 192$	$36 / 192$	$35 / 192$
$(16-19 \%)$	(17%)	(16%)	(17%)	(19%)	(18%)

Comparison between groups:

Confidence Intervals: $\mathrm{Cl}=x \pm\left(t^{\prime} \times\right.$ SEM $)$

Comparison between groups:

Confidence Intervals: $\mathrm{Cl}=x \pm\left(z^{\prime} \times\right.$ SEM $)$

How many pieces would you like your pizza to be cut into? 4 or 8?

