Basics of Statistical Analysis

Maj Gen (R) Suhaib Ahmed, HI (M) MBBS; MCPS; FCPS; PhD (London)

Genetics Resource Centre (GRC)

www.grcpk.com

Statistics: The Science of

- Data collection
- Data presentation
- Data interpretation
- Statistical analysis

"Data don't make any sense, we will have to resort to statistics."

"I can prove it or disprove it! What do you want me to do?"

Statistics $\neq p$ value

Statistics

- Why?
- When ?
- How ?

Statistical Analysis

- Descriptive
- Comparison
- Correlation
- Probability and risk analysis
- Survival analysis

Types of Data

- Categorical data:
 - Two categories:
 - >Two categories:
 - Ordered categories:
- Numerical data:

Ethnic groups, Blood groups Mild Moderate Severe

Male /Female, True/False

- Discrete: Number of children
- Continuous: Blood glucose, Hb
- Other types:
 - Rates
 - Ratios

Mean

- Arithmetic average
- Median
 - Middle value when ranked in order
- Mode
 - Value that occurs most often

Why do we need statistical analysis?

To use the information gained from a "sample population" to make inferences about the "actual population"

Population

- Inhabitants of a place
- Patient population
- Sample population

Distribution of Population

- Normal
- Abnormal

Normal Distribution: Large sample

Abnormal Distribution (Selected sample)

Abnormal Distribution

(a) Symmetrical and bell-shaped

(b) Positively skewed or skewed to the right

(c) Negatively skewed or skewed to the left

Binomial Distribution

Standard Error of Mean (SEM)

Mean Haemoglobin

- **2**.5
- **4**.5
- 7.2
- 7.9
- **8**.7
- 9.6
- 9.8
- **10**.5
- **11.7**
- **1**3.2
- **14.1**

Mean: 9.1 Range: 2.5-14.5 SD: 3.32

Mean Haemoglobin in Two Groups

Group-I	Group-II	
2 .5	7 .3	
4 .5	8 .4	
7 .2	8 .6	
7 .9	8 .7	
8 .7	9 .0	
9 .6	9 .1	
9 .8	9 .6	
1 0.5	9 .7	
11.7	1 0.1	
1 3.2	1 0.2	
14.1	1 0.3	
Mean: 9.1	Mean: 9.2	
Range: 2.5-14.5	Range: 7.3-10.3	
SD: 3.32	SD: 0.87	

Dispersion around the Mean (Expression of Variability)

- Range
- Standard Deviation (SD)
- Coefficient of Variation (CV)
- Standard Error of the Mean (SEM)

Standard Deviation (SD)

Statistical Analysis

- Parametric Tests
 - Student's t-test
- Non Parametric Tests
 - Mann-Whitney U test

Statistical Analysis: Comparison between groups

Hypothesis testing (*p* value)
Confidence interval (CI)

Comparison between groups: Hypothesis testing

- Null hypothesis
 - There is no difference between the groups
- Alternate hypothesis
 - There is a difference between the groups

Comparison between groups: Hypothesis testing

- Null hypothesis
 - There is no difference between the groups
- Alternate hypothesis
 - There is a difference between the groups

P value

Probability that the null hypothesis is correct

Interpretation of P value

- 1.0 = 100%
- 0.5 = 50%
- 0.29 = 29%
- 0.12 = 12%
- 0.07 = 7%
- 0.05 = 5%
- 0.01 = 1%
- 0.001 = 0.1%

Interpretation of P value Significant and not significant

- P = 0.03P = 0.05
- P = 0.09

Comparison between groups: Hypothesis testing

Mean:5.1 g/dl Mean: 12.2 g/dl Group-I Group-III n = 39 n = 458

P = 0.03 (P < 0.05)

There is a statistically significant difference between the two groups

Comparison between groups:

Hypothesis testing (Pvalue)

P = 0.09 (P > 0.05) There is no statistically significant difference between the two groups

Confidence Interval (CI)

- A range (interval) in which one is confident that it contains the actual population mean
- Example: (95% CI = 8.4-10.5 g/dl)
- % CI ?
 - **90%**
 - **95%**
 - **99%**

- Six sides
- Chance of each side: 1/6 (16.6%)

Rolling the Dice

No:	Expected	Observed Frequency:			
	Frequency:	I	П	111	IV
12 times	2/12	3/12	1/12	4/12	2/12
	(17%)	(25%)	(8%)	(33%)	(17%)

Rolling the Dice

No:	Expected Frequency:	Observed Frequency:			
		I	11	Ш	IV
12 times	2/12	3/12	1/12	4/12	2/12
	(17%)	(25%)	(8%)	(33%)	(17%)
48 times	8/48	7/48	6/48	10/48	8/48
	(17%)	(15%)	(13%)	(21%)	(17%)

Rolling the Dice

No:	Expected	Observed Frequency:			
	Frequency:	1	П	111	IV
12 times	2/12	3/12	1/12	4/12	2/12
(8-33%)	(17%)	(25%)	(8%)	(33%)	(17%)
48 times	8/48	7/48	6/48	10/48	8/48
(13-21%)	(17%)	(15%)	(13%)	(21%)	(17%)
192 times	32/192	31/192	32/192	36/192	35/192
(16-19%)	(17%)	(16%)	(17%)	(19%)	(18%)

Comparison between groups: Confidence Intervals: $CI = x + (t' \times SEM)$ Mean:5.1 g/dl Mean: 12.2 g/dl 95% CI: 10.5-14.1 g/dl 95% CI: 2.5-8.1 g/dl Group-I Group-III n = 39 n = 458

Comparison between groups:

Confidence Intervals: $CI = x + (z' \times SEM)$

How many pieces would you like your pizza to be cut into? 4 or 8?

